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Abstract

Currently, Low-Rate Wireless Personal Area Networks (LR-WPAN) based on the

Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard are at risk

due to open-source tools which allow bad actors to exploit unauthorized network

access through various cyberattacks by falsifying bit-level credentials. This research

investigates implementing a Radio Frequency (RF) air monitor to perform Near Real-

Time (NRT) discrimination of Zigbee devices using the IEEE 802.15.4 standard. The

air monitor employed a Multiple Discriminant Analysis/Euclidean Distance classi-

fier to discriminate Zigbee devices based upon Constellation-Based Distinct Native

Attribute (CB-DNA) fingerprints. Through the use of CB-DNA fingerprints, Physi-

cal Layer (PHY) characteristics unique to each Zigbee device strengthen the native

bit-level authentication process for LR-WPAN networks.

Overall, the developed RF air monitor achieved an Average Cross-Class Percent

Correct Classification of %Ctst = 99.24% during the testing of Ncls = 5 like-model

BladeRF Software Defined Radios transmitting Zigbee protocol bursts. Addition-

ally, to evaluate the NRT capability of the air monitor, a statistical analysis of

Ntiming = 1000 Zigbee bursts determined the worst-case average runtime from burst

detection to classification. The analysis concluded that the runtime was truntime ≈ 269

mSec. Ultimately, this research found that PHY characteristics provide an additional

method of authentication NRT to enhance the inherent network security for Zigbee

applications from cyberattacks.
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Near Real-Time Zigbee Device Discrimination Using CB-DNA Features

I. Introduction

The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard

defines the Physical Layer (PHY) and Medium Access Control (MAC) for Low-Rate

Wireless Personal Area Networks (LR-WPAN). Projections currently estimate the

annual shipment of 1 billion IEEE 802.15.4 standard devices by 2024 [1]. Specifically,

Zigbee is a IEEE 802.15.4 based protocol that has become a popular alternative

to Bluetooth and Wi-Fi due to its low-cost and low-power requirements. Zigbee

has become widespread in Industrial Control Systems (ICS), home automation, and

remote monitoring functions. These applications result in Zigbee having a large

cyber-physical footprint.

However, with cost and simplicity as the main drivers for Zigbee, network security

has suffered. Zigbee is prone to several different cyberattacks ranging from network

key sniffing, device spoofing, and simple replay attacks. Open-source tools, such as

Killerbee [2], currently exist that implement all of the above cyberattacks for Zigbee

and other IEEE 802.15.4 based protocols. The impact of these attacks spans from loss

of sensitive network information to, worst-case, the malicious modification of physical

systems.

Outlined in the 2018 Department of Defense (DoD) Cyber Strategy, one of the

DoD’s five objectives is to “Defend U.S. critical infrastructure from malicious cyber

activity that alone, or as part of a campaign, could cause a significant cyber inci-

dent” [3]. Therefore, the DoD is directly interested in methods that further enhance

cyberspace security for U.S. ICS applications.

1
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1.1 Research Objectives

The objective of this research is to supplement the current Zigbee authentication

process by monitoring network traffic and calculating fingerprints (statistical features)

based on the transmitting device’s PHY characteristics. This Radio Frequency (RF)

air monitor is to perform Near Real-Time (NRT) discrimination of transmitting Zig-

bee devices based on the computed fingerprints. The output from the air monitor

provides classification information, which could augment the standard bit-level device

authentication process.

1.2 Research Contributions

This research extends from several previous Zigbee device discrimination efforts

to achieve results not previously obtained. The significant outcomes of prior research

endeavors are presented in Chapter II. Specifically, this research determines the fea-

sibility of fielding a RF air monitor to perform NRT device discrimination using

Constellation-Based Distinct Native Attribute (CB-DNA) fingerprints.

1.3 Thesis Organization

Document organization for subsequent chapters is in the following manner:

• Chapter II - Background and Literature Review: Provides an overview of the

Zigbee protocol, Distinct Native Attribute (DNA) techniques, classifiers, and

the required hardware and software tools for experimentation.

• Chapter III - Methodology: Describes the experimental design process for the

RF air monitor and the approaches utilized when conducting training and test-

ing scenarios.

2
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• Chapter IV - Results and Analysis: Presents the RF air monitor’s device dis-

crimination performance for Zigbee protocol devices. This chapter also performs

a runtime analysis to asses the NRT aspect of the RF air monitor.

• Chapter V - Conclusions: Provides a synopsis of the collected results and rec-

ommendations for future research endeavors.

3
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II. Background and Literature Review

2.1 Overview

This chapter provides technical background on the methods used to conduct this

research. Section 2.2 provides an overview of the Zigbee communication protocol,

and Section 2.3 discusses the Offset-Quadrature Phase Shift Keying (O-QPSK) mod-

ulation scheme. Section 2.4 addresses both the Radio Frequency Distinct Native

Attribute (RF-DNA) methods used to develop statistical features for received sig-

nals using time-domain traits, as well as the Constellation-Based Distinct Native

Attribute (CB-DNA) techniques used to derive statistical features for constellation-

based modulation schemes. Section 2.5 discusses the use of Multiple Discriminant

Analysis (MDA) generated models in conjunction with Euclidean Distance (ED) to

perform classification of received fingerprints. Finally, Sections 2.6 - 2.7 describe the

various hardware and software tools employed throughout the research.

2.2 Zigbee Wireless Protocol

Zigbee is a wireless communication protocol based upon the Institute of Electrical

and Electronics Engineers (IEEE) 802.15.4 standard designed for low data rate, short-

range wireless networks [4]. Zigbee devices are often utilized as the communication

link for sensors that provide the overall system a state-of-health status for various

sub-systems. In real-world applications, these sub-systems include monitoring the

structural health of buildings [4], the status of medical patients [5], home automation,

and Industrial Control Systems (ICS) applications. Zigbee has become popular for

these operations due to its low-power budget and the ever-decreasing entrance barrier

to establishing a Wireless Personal Area Network (WPAN).

Zigbee has the ability to operate in three different frequency bands: fB1 = 868

4
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MHz, fB2 = 915 MHz, and fB3 = 2.4 GHz. The three frequency bands combined

provide Nchannels = 27 distinct channels. The fB3 = 2.4 GHz band is the most

common frequency band and is utilized worldwide. In contrast, the two remaining

sub-gigahertz bands are typically employed only in specific regions of the world (fB1 =

868 MHz in Europe and fB2 = 915 MHz in North America). This research focuses

on the fB3 = 2.4 GHz frequency band since it is the only band implemented globally.

The fB3 = 2.4 GHz band for Zigbee devices consists of NB3 channels = 16 channels.

Each channel has a bandwidth of Bchannel = 2 MHz, and the center frequency of each

channel is separated by fch separate = 5 MHz. An illustration of the Zigbee protocol

spectrum can be seen in Figure 1 [6]. Ideally, prior to implementation, the spectrum

utilization is evaluated and the optimal channel is chosen for the communication

application. The equation for determining the center frequency (fcchannel) for Zigbee

channels 11-26 is

fcchannel = 2405 + 5(k − 11) (1)

where k is the desired channel number such that k = [11, 12, ..., 26]. To transmit a

binary message using the Zigbee protocol, the original binary message is first parsed

into Nbits = 4-bit segments. This nibble of bits corresponds to one of NData Symbols =

16 different Zigbee Data Symbols (DSs). Each DS is then mapped to a Nchips = 32-bit

Figure 1: Zigbee frequency bands with Nchannels = 27 channels [6]

5
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nearly-orthogonal chip sequence as shown in Table 1. Next, the resulting chips are

modulated using O-QPSK. O-QPSK is a variation of Quadrature Phase Shift Keying

(QPSK) which consists of four communication symbols (0, 1, 2, and 3). For the

Zigbee protocol, the O-QPSK symbol rate is fsymbol rate = 1 × 106 O-QPSK symbols

per second. The overall process can be seen in Figure 2 [7].

Per the IEEE 802.15.4 standard, every Zigbee message consists of a Sychronization

Header Region (SHR), Physical Layer (PHY) Header Region (PHR), and a PHY

Service Data Unit (PSDU) to create the overall PHY Protocol Data Unit (PPDU).

Table 1: Zigbee symbol to chip mapping for fB3 = 2.4 GHz frequency band
Symbol Chip Values (c0, c1, ...., c31)

0 11011001110000110101001000101110
1 11101101100111000011010100100010
2 00101110110110011100001101010010
3 00100010111011011001110000110101
4 01010010001011101101100111000011
5 00110101001000101110110110011100
6 11000011010100100010111011011001
7 10011100001101010010001011101101
8 10001100100101100000011101111011
9 10111000110010010110000001110111
10 01111011100011001001011000000111
11 01110111101110001100100101100000
12 00000111011110111000110010010110
13 01100000011101111011100011001001
14 10010110000001110111101110001100
15 11001001011000000111011110111000

Binary Data 
From PPDU

Bits-to-symbol Symbol-to-chip O-QPSK Modulator
Modulated 

Signal

Figure 2: Zigbee signal generation flowchart [7]
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The SHR portion of the signal is used to synchronize with a data stream and consists of

a preamble (eight consecutive Zigbee DS zeros) followed by a Start of Frame Delimiter

(SFD) (Zigbee DSs 7 and 10). The PHR contains the frame length of the PSDU in

bytes, and the PSDU contains the type of message transmitted along with the actual

payload data. The PSDU can assume the form of Nformats = 4 different Medium

Access Control (MAC) frame formats associated with a data frame, acknowledgment

frame, command frame, and beacon frame. Figures 3 - 6 shows the diagram for each

of the four PPDU formats.

Given that the PHR is composed of one byte, where one bit is reserved, the

maximum value that can be represented by the PHR is NPHR max = 127. The largest

PSDU can contain DSZmax = 127 bytes × 2 DSZ

byte
= 254 Zigbee DSs. Thus, the

Figure 3: Zigbee PPDU data frame format [4]

Figure 4: Zigbee PPDU acknowledgement frame format [4]
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Figure 5: Zigbee PPDU command frame format [4]

Figure 6: Zigbee PPDU beacon frame format [4]

maximum duration of a Zigbee burst is

tmax =

(
10 DSZ

SHR
+

2 DSZ
PHR

+
254 DSZ
PSDU

)(
32 chips

DSZ

)(
CSO

2 chips

)(
Sec

106 CSO

)
= 4.256 mSec.

(2)

2.3 Offset-Quadrature Phase Shift Keying Modulation

QPSK modulation consists of two orthogonal Binary Phase Shift Keying (BPSK)

signals. One BPSK signal being the In-Phase (I)-channel and the other BPSK signal

being the Quadrature (Q)-channel. Therefore, QPSK consists of four unique com-

munication symbols (0, 1, 2, and 3). QPSK splits a binary message stream, m(t),

into two separate channels and represents the bits in non-return-to-zero form. The

IEEE 802.15.4 standard requires that the I-channel consists of the even bits and the

8
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Q-channel consists of the odd bits [7]. The two channels are constructed as follows:

m(t) = m0,m1,m2,m3,m4,m5, ..., (3)

mI(t) = (m0,m2,m4, ..., ) · 2− 1, (4)

mQ(t) = (m1,m3,m5, ..., ) · 2− 1, (5)

where mI(t) is the I-channel and mQ(t) is the Q-channel. The transmitted QPSK

modulated signal, s(t), is created by combining the I and Q channels such that

s(t) = mI(t) cos(2πf0t+ φ) + jmQ(t) sin(2πf0t+ φ) (6)

f0 is the carrier frequency, t is time, and φ is an arbitrary phase offset. As mentioned

previously, Zigbee operates by using an O-QPSK modulation scheme. O-QPSK is a

variant of QPSK modulation such that the Q-channel incurs a delay before modula-

tion.

O-QPSK is similar to QPSK, but the difference arises in how the modulation

scheme transitions between communication symbols. In QPSK, a symbol (0, 1, 2,

or 3) can transition to any other symbol even if there exists π radians of separation

between the two symbols. QPSK performs zero-crossings within the constellation

projection to transition between symbols separated by π radians. O-QPSK eliminates

zero-crossings by only allowing symbols to transition to adjacent symbols within the

constellation projection (maximum separation of π/2 radians). In application, the Q-

channel becomes delayed by half of a QPSK symbol period before being combined in

the same manner outlined in (6). The delayed channel forces only one chip associated

with the QPSK symbol to change at a time, which limits the angle between symbol

9
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transitions.

O-QPSK is desirable for Zigbee applications since the modulation scheme enables

the use of highly efficient amplifiers. The high efficiency of the amplifier is crucial

to the low-power constraints that Zigbee devices require. Constellation diagrams for

QPSK and O-QPSK are shown in Figure 7 and Figure 8 respectively.

In-Phase

Q
u
a
d
ra

tu
re

Figure 7: Constellation diagram, with symbol transitions shown, for a QPSK signal
after implementing a root-raised cosine pulse shaping filter with a roll-off factor of
β = 0.8. Zero-crossings are present due to symbol transitions of π radians.
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In-Phase

Q
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d

ra
tu

re

Figure 8: Constellation diagram, with symbol transitions shown, of an O-QPSK signal
after implementing a root-raised cosine pulse shaping filter with a roll-off factor of
β = 0.8. No zero-crossings are present since symbol transitions of π radians are
eliminated.

2.4 Distinct Native Attribute (DNA) Fingerprint Generation

Distinct Native Attribute (DNA) fingerprinting is a method of generating statistics

about the Open Systems Interconnection (OSI) model PHY characteristics specific to

a device. These fingerprints enable both device classification (one device vs. many de-

vices) and verification (one device vs. one device) when implemented with a classifier

(addressed further in Section 2.5). Two common DNA fingerprint generation tech-

niques are RF-DNA and CB-DNA. Section 2.4.1 addresses RF-DNA and Section 2.4.2

further discusses CB-DNA. For completeness, there are many additional fingerprint

generation techniques such as, but not limited to, Slope-based Frequency Shift Keying

[8, 9], Chip-Shape DNA [10], and Correlation-Based DNA [11]. The majority of these

techniques are subsets of RF-DNA and tailored for specific applications. Therefore,
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this work only addresses RF-DNA and CB-DNA.

2.4.1 Radio Frequency-Distinct Native Attribute

RF-DNA is the process of generating device “fingerprints” by using either spectral

or time-domain signal features. This research stems directly from the time-domain

techniques for device fingerprint generation. Generally, the time-domain characteris-

tics of interest for RF-DNA fingerprint generation are the signal’s instantaneous am-

plitude (a[n]), phase (φφφ[n]) and frequency (f [n]). Since RF-DNA uses instantaneous

signal characteristics, fingerprints can be generated for any received signal regardless

of the modulation scheme. However, RF-DNA implementation generally occurs in a

constant portion of the signal that does not change between bursts to improve the

homogeneity of fingerprints. Therefore, commonly targeted portions of the signal for

RF-DNA include synchronization regions. Regular synchronization regions utilized

in RF-DNA are the preamble, midamble, or postamble of a signal.

For complex signals, each of the instantaneous signal characteristics above can be

calculated as follows:

a[n] =
√

x2[n] + y2[n], (7)

φφφ[n] = tan−1

(
y[n]

x[n]

)
, (8)

f [n] =
dφφφ[n]

dn
, (9)

where x[n] is the real portion of the signal, y[n] is the imaginary portion, and tan−1 (•)

is the four-quadrant inverse tangent. For each of the three signal characteristics,

statistical analysis is performed to calculate the variance (σ2), skewness (γ), and

12
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kurtosis (κ) of each characteristic. The signal of interest regularly is divided into

multiple sub-regions for which the desired statistics are calculated to create the RF-

DNA fingerprints. Below are the equations used to compute the desired statistics:

σ2 =
1

N − 1

N∑
n=1

(z[n]− z̄)2 , (10)

γ =
1
N

∑N
n=1 (z[n]− z̄)3(√

1
N

∑N
n=1 (z[n]− z̄)2

)3 , (11)

κ =
1
N

∑N
n=1 (z[n]− z̄)4(

1
N

∑N
n=1 (z[n]− z̄)2

)2 , (12)

such that z[n] represents the signal characteristic of interest (instantaneous ampli-

tude, phase, or frequency) and z̄ is the characteristic’s sample mean. Therefore, the

generated statistics for each sub-region creates a portion of the fingerprint structure

(fTDi
) where the ith sub-region yields

fTDi
= [σ2

i , γi, κi]. (13)

The final fingerprint structure (fTD) is each of the sub-region fingerprints concatenated

together such that

fTD = [fTD1

... fTD2

... ...
... fTDN

]. (14)

Therefore, the total number of features (NF ) generated for a RF-DNA fingerprint

structure is

NF = (NR ×NC ×NS) (15)
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where NR is the number of sub-regions for the signal of interest, NC is the number

of signal characteristics utilized, and NS is the number of statistics per characteristic

calculated.

While the RF-DNA technique above described targeted communication system

transmissions, RF-DNA applications are much broader. Additional RF-DNA research

include classifying devices based upon unintentional emissions [12, 13, 14, 15] and

determining device configurations using noise radar signals [16, 17]. Finally, Near

Real-Time (NRT) RF-DNA functionality was shown to be feasible when targeting

the preamble of Zigbee protocol bursts [18].

2.4.2 Constellation-Based Distinct Native Attribute

CB-DNA detects variations in received communication symbols within the con-

stellation space. Specifically, the magnitude and phase variations are of interest for

CB-DNA. Figure 9 presents an arbitrary example of these communication symbols’

amplitude and phase deviations from the ideal symbol locations. It is important

to note that this fingerprinting technique is only applicable to constellation-based

communication schemes because the process is dependent upon calculating statistics

from the amplitude and phase of the received communication symbols. CB-DNA

additionally varies from RF-DNA by demodulating the received signal to estimate

the transmitted symbols. The constellation projection values for the estimated sym-

bols generate the CB-DNA fingerprints, in contrast to RF-DNA which calculates the

instantaneous signal characteristics for a specific region of the signal. Ultimately, CB-

DNA results in the ability to use the entire collected burst (communication symbols

associated with hundreds of Zigbee DSs), while RF-DNA is typically limited to the

synchronization region of the signal (NRF−DNA = 10 Zigbee DSs).

For CB-DNA, the nine typical statistical features of interest are:
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• Variance of the signal’s phase (σ2
φ)

• Variance of the signal’s amplitude (σ2
a)

• Skewness of the signal’s phase (γφ)

• Skewness of the signal’s amplitude (γa)

• Kurtosis of the signal’s phase (κφ)

• Kurtosis of the signal’s amplitude (κa)

• Autocovariance of the real portion of the signal (σxx)

• Autocovariance of the imaginary portion of the signal (σyy)

• Covariance of the real and imaginary portions of the signal (σxy)

Below are the methods to compute the desired statistics:

µa =
1

N

N∑
n=1

√
x2[n] + y2[n], (16)

µφ =
1

N

N∑
n=1

tan−1

(
y[n]

x[n]

)
, (17)

σ2
a =

1

N − 1

N∑
n=1

(
√

x2[n] + y2[n]− µa)2, (18)

σ2
φ =

1

N − 1

N∑
n=1

(tan−1

(
y[n]

x[n]

)
− µφ)2, (19)

γa =
1
N

∑N
n=1(

√
x2[n] + y2[n]− µa)3(√

1
N

∑N
n=1(

√
x2[n] + y2[n]− µa)2

)3 , (20)
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Signal w/ Offsets

Figure 9: Ideal O-QPSK Constellation Projection (Blue) vs O-QPSK Constellation
Projection with Magnitude and Phase Offsets

γφ =

1
N

∑N
n=1(tan−1

(
y[n]
x[n]

)
− µφ)3(√

1
N

∑N
n=1(tan−1

(
y[n]
x[n]

)
− µφ)2

)3 , (21)

κa =
1
N

∑N
n=1(

√
x2[n] + y2[n]− µa)4(

1
N

∑N
n=1(

√
x2[n] + y2[n]− µa)2

)2 , (22)

κφ =

1
N

∑N
n=1(tan−1

(
y[n]
x[n]

)
− µφ)4(

1
N

∑N
n=1(tan−1

(
y[n]
x[n]

)
− µφ)2

)2 , (23)

x̄ =
1

N

N∑
n=1

x[n], (24)
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ȳ =
1

N

N∑
n=1

y[n], (25)

σxx =
1

N − 1

N∑
n=1

(x[n]− x̄)2, (26)

σyy =
1

N − 1

N∑
n=1

(y[n]− ȳ)2, (27)

σxy =
1

N

N∑
n=1

(x[n]− x̄) (y[n]− ȳ) . (28)

Since CB-DNA demodulates the received signal back to the original communica-

tion symbol transmitted, instead of breaking the signal into an arbitrary amount of

sub-regions as performed in RF-DNA, the number of communication symbol associ-

ated with the modulation scheme determines the number of sub-regions. Utilizing

the number of communication symbols as the number of sub-regions is referred to

as unconditional CB-DNA [19]. For O-QPSK, the number of unconditional regions

is Nregions = 4 to correspond with communication symbols 0, 1, 2, and 3. In previ-

ous research, it was identified that the statistical features calculated for the current

communication symbol being estimated were also dependent upon at least the pre-

ceding and proceeding symbols [19, 20, 21, 22]. This research discovery produced

conditional sub-cluster CB-DNA for which the previous, current, and next commu-

nication symbols are significant when calculating the statistical features [19, 20, 21].

For O-QPSK, there are Ntransitions = 43 = 64 unique combinations that can occur

with three symbols. However, for the Zigbee protocol, it has been identified through

an exhaustive search method that only Nlikely = 30 O-QPSK symbol combinations

are likely to occur (Figure 10) [11]. This finding significantly reduces the number of

conditional sub-cluster conditions to check during CB-DNA fingerprint generation.
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Figure 10: O-QPSK CB-DNA Conditional Sub-Clusters

This work calculated CB-DNA fingerprints utilizing conditional sub-clusters. The

fingerprint structure utilized each of the Nlikely = 30 likely conditional sub-clusters to

occur in a Zigbee transmission (O-QPSK symbol sequences given in Section 3.6.5).

The total number of statistical features in the CB-DNA fingerprint structure is

NfeaturesCB
= Nstatistics ×Nsub-clusters (29)

where Nstatistics is the number of statistical features calculated for each sub-cluster and

Nsub-clusters is the number of conditional sub-clusters of interest for the modulation

scheme. Therefore, the number of statistical features utilized in this research was

NfeaturesCB
= 9

features

sub-cluster
× 30 sub-clusters = 270 features. (30)

Previous research conducted utilizing CB-DNA with Zigbee devices includes [22,

23]. These experiments performed verification for a set of Zigbee protocol devices with
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a high degree of accuracy and also assessed different Dimensional Reduction Analysis

(DRA) techniques. Additionally, research exercising CB-DNA extends beyond the

IEEE 802.15.4 standard. Several experiments performed CB-DNA classification of

Ethernet network cards using unintentional cable emissions [19, 20, 21].

2.5 Classifiers

Multiple Discriminant Analysis (MDA) is a Fisher-based model that expands

Fisher’s Linear Discriminant Analysis (LDA) beyond projecting classes into a sin-

gle dimension. MDA reduces a c-class problem into a c − 1 dimensional space. In

general, MDA maximizes the ratio of the distance between classes to the variance

within a class. Using k-fold partitioning, Nk-fold =
(
k
k−1

)
Projection Matrices (Ws)

are created and the W that has the best between-class scatter and within-class scatter

is selected.

In Figure 11, two arbitrary Ws for a 3-class problem are presented [24]. For this

problem, W1 is the better W since the classes do not overlap. No insight towards fea-

ture relevance is provided with the returned W. Two additional classifiers previously

utilized for DNA applications that provide information into feature relevance are Gen-

eralized Relevance Learning Vector Quantization-Improved (GRLVQI) and Random

Forest (RndF). Both GRLVQI and RndF require significantly more computational

time to develop classification models when compared to MDA. For completeness, ad-

ditional information of GRLVQI can be found here [25, 26, 27], while information on

RndF can be found here [23, 28, 29].

Ultimately, MDA is performed on a given fingerprint structure to produce a c− 1

dimension W. This W is then later employed with a different fingerprint structure

to perform device classification. Maximum Likelihood (ML) classification, a common

classifier used for RF-DNA, utilizes the generated projection matrix to classify test
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Figure 11: Two projection spaces for MDA classifier [24]

fingerprints (fingerprints not used to create the projection matrix). This process as-

sumes that the fingerprints utilized for training follow a Gaussian distribution. ML

then creates Bayesian decision boundaries to determine which class a test fingerprint

should be associated. However, to reduce the computational complexity, this re-

search employed a nearest-neighbor classifier by calculating the ED between the test

fingerprint in the projection space and each of the class means using

d =

√√√√ c−1∑
i=1

(µclassi − ftsti)
2 (31)

where d is the ED, c is the number of classes, µclass is the class mean, and ftst is the

projected test fingerprint. The class mean with the shortest distance to the projected

fingerprint is determined to be the “most likely” class. Utilizing ED as a classifier

have been demonstrated in [18] (with MDA using RF-DNA fingerprints) and [19]

(without MDA using CB-DNA fingerprints).
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2.6 SDR

A Software Defined Radio (SDR) is a radio device that employs software to accom-

plish tasks traditionally implemented via hardware. This software approach allows

SDRs to be extremely flexible devices by enabling the user to continually reconfigure

the devices to specific applications within the SDR’s design constraints. This research

utilized two different types of SDRs, one type as the transmitting devices and the

other as the Radio Frequency (RF) air-monitor. BladeRF SDRs were the transmit-

ting devices, while an Ettus Universal Software Radio Peripheral (USRP) x310 SDR

was the RF air-monitor.

2.7 C++ Libraries and Software Tools

C++ inherently provides the capability to perform nominal programming tasks

such as algebraic operations and reading/writing to files. However, for specialty

applications, additional libraries and software tools provide a means of efficiently

performing non-standard tasks. Sections 2.7.1 - 2.7.3 discuss various C++ libraries

and the capabilities they provide. Section 2.7.4 addresses an additional software tool,

outside of C++, utilized during the course of this research.

2.7.1 USRP Hardware Driver

USRP Hardware Driver (UHD) is a user-space library developed by Ettus Research

to interface with Ettus USRP devices via a Command Line Interface (CLI). The

software provides a method to identify USRP devices connected to the host computer,

as well as calibrate the connected devices to minimize In-Phase/Quadrature-channel

imbalance. Additionally, this software supplies the necessary libraries for higher-

level languages, such as C++, to configure USRP devices for the transmission and

reception of samples.
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2.7.2 Eigen

Eigen is an open-source C++ template library that performs linear algebra oper-

ations with vectors and matrices [30]. This library provides a streamlined method of

accomplishing matrix operations such as multiplication, conjugation, inverse, trans-

position, dot product, and cross-product.

2.7.3 liquid-dsp

liquid-dsp is an open-source Digital Signal Processing (DSP) library written

in the C programming language employed to process SDR data [31]. Even though

liquid-dsp targets applications using C, the library can also be compiled and linked

with C++ files and data structures. liquid-dsp operations include, but are not lim-

ited to, generating filters, performing Fourier transformations, and creating numerically-

controlled oscillators.

2.7.4 bladeRF

bladeRF is a software tool utilized to control the BladeRF SDRs [32]. This soft-

ware provides a CLI tool called bladerf-cli which enables the user to configure

the SDR to a desired operating mode. Examples of the different BladeRF SDR

applications enabled through the software include utilization as a RF modulator/de-

modulator, a Global Positioning System (GPS) receiver, and an Advanced Television

Systems Committee (ATSC) transmitter.
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III. Methodology

3.1 Introduction

This chapter outlines the methodology employed to determine the applicability

of Near Real-Time (NRT) device classification with Constellation-Based Distinct Na-

tive Attribute (CB-DNA) fingerprints. Additionally presented in this chapter are

the research goals (Section 3.2), hypotheses (Section 3.3), and measures of merit

(Section 3.4) for the experiment. Section 3.5 describes the Zigbee signal transmit-

ted for both training and testing scenarios. To achieve the constellation projections,

Section 3.6 discusses burst detection and the subsequent signal processing techniques

performed to demodulate the signal. Section 3.6 also examines the process of generat-

ing CB-DNA fingerprints for the collected bursts. Sections 3.7 and 3.8 address device

classification with Multiple Discriminant Analysis/Euclidean Distance (MDA/ED)

using CB-DNA fingerprints.

3.2 Research Objectives

The objective of this research is to perform device classification NRT using CB-

DNA generated fingerprints. The implemented process will continuously monitor the

wireless spectrum for a center frequency of fc = 2480 MHz and a Wrx = 10 MHz

bandwidth for Zigbee transmissions. All collected Zigbee bursts drive the fingerprint

and classification processes. The goal of the classifier is to estimate the “most likely”

transmitted device using data collected from training runs. This research ultimately

enhances the security of Low-Rate Wireless Personal Area Networks (LR-WPAN) by

implementing an air monitor to augment bit-level credentials with Physical Layer

(PHY) verification. Figure 12 provides a block diagram of the experimental method-

ology.
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3.3 Research Hypotheses

This research assesses the following hypotheses:

• CB-DNA fingerprint generation can be accomplished NRT to facilitate classi-

fication of devices using the Institute of Electrical and Electronics Engineers

(IEEE) 802.15.4 standard.

• Device classification performance will be consistent with previous NRT Radio

Frequency Distinct Native Attribute (RF-DNA) research endeavors [18].

3.4 Measures of Merit

Measures of merit for the research include:

• Average Cross-Class Percent Correct Classification (%C) of devices for the

MDA/ED classifier.

• Average runtime of the air monitor from burst detection to classification for

received Zigbee bursts.

For the experiment, %C performance is verified by producing a Confusion Matrix

(CM) of the testing scenario. Timing analysis data of Zigbee test bursts provide the

NRT performance of the air monitor.
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Figure 12: Block diagram of SDR transmitter and RF air montor processes

3.5 SDR Transmitter Design and Implementation

Using the IEEE 802.15.4 standard, Ncls = 5 BladeRF Software Defined Radios

(SDRs) transmitted Zigbee bursts for the experiment. The BladeRF SDR has a

tuning range of fBladeRF = [300 3800] MHz, maximum instantaneous bandwidth of

BBladeRF = 28 MHz, and a max sampling rate of fsBladeRF
= 40 Mega-Samples-Per-

Second (Msps). For each BladeRF, Table 2 shows the device serial numbers as re-

ported by software and the associated device IDs. The experiment required the

creation of two separate transmission files. All training collections utilized one file,

while all testing scenarios used the other transmission file.

Table 2: BladeRF SDR Device Identifiers
BladeRF Devices

Device ID Device Serial Number
BladeRF1 63b81e9e21451176dde16e31ebc81c5f
BladeRF2 814b072c9530f5116db17ee3f5dc31c4
BladeRF3 ddf13f69ae8b744cd2a0ace875c255e0
BladeRF4 6da8d69c6f3c664e7396ea3a7530e078
BladeRF5 42b92a8a385e7577a0957e73071c94a4
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Each transmission file was composed of Nbursts = 500 bursts with a t = 100 mSec

pause between bursts. Every burst contained a total of NDS burst = 212 Zigbee Data

Symbols (DSs), where the first NSHR = 12 Zigbee DSs were constant. The initial DSs

were identical in every burst to achieve the Zigbee Sychronization Header Region

(SHR) and PHY Header Region (PHR) as specified by the IEEE 802.15.4 standard.

The remaining Nrandom = 200 Zigbee DSs were randomly generated to serve as the

payload for each burst.

Of note, the PHY Service Data Unit (PSDU) portion of the created bursts did not

fit one of the four standard Medium Access Control (MAC) frame formats. To satisfy

MAC frame requirements, the MAC frame format must be specified within the frame

control field of the PSDU and a Cyclic Redundancy Check (CRC) must be performed.

Once a MAC format is determined, a large portion of the PSDU is reserved for source

and destination address information which increases the number of constant Zigbee

DSs within the burst. For example, a burst using a data frame structure would

result in NDS = 57 constant Zigbee DSs per burst leaving only NDS = 155 Zigbee

DSs to be randomly changed. Ultimately, the randomly generated PSDU prevented

potentially training the classifier with MAC address information. Additionally, since

the developed bursts did not fit a standard MAC frame format, a CRC was not

necessary. The randomized PSDU format also increased the population of total bursts

that could be generated for training and testing.

All of the created Zigbee bursts within a transmission file had a unique payload and

none of the generated bursts repeated between files. To create the Zigbee signal, the

Zigbee DSs were converted to chips (Table 1), and the even and odd chips were split

between the I and Q-channels respectively in a non-return-to-zero form. Additionally,

the Q-Channel was delayed from the I-Channel by the period of half of a Zigbee

chip (Tc) to achieve Offset-Quadrature Phase Shift Keying (O-QPSK) modulation.
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Finally, the signal was then passed through a half-sine pulse shaping matched filter,

p(t), using

p(t) =


sin
(
π t

2Tc

)
0 ≤ t ≤ 2Tc

0 otherwise

(32)

where Tc is half of the period of a Zigbee chip, and t is time. Half-sine pulse shaping

is required since the intended Zigbee transmission channel was in the fB3 = 2.4

GHz frequency band [7]. Ultimately, pulse shaping turned the signal into a constant

envelope modulation and increased the signal’s performance across noisy channels.

Figure 13 shows a collected Zigbee burst with half-sine pulse shaping.

Each BladeRF SDR was tuned to a center frequency of fc = 2480 MHz with a
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Figure 13: Constellation diagram, with symbol transitions shown, of an over-the-air
collected Zigbee burst with half-sine pulse shaping. SNR was determined experimen-
tally to be Es/N0 ≈ 31 dB.
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bandwidth of Wtx = 2 MHz (Zigbee channel Ntx ch = 26 from Figure 1). Additionally,

the sampling rate was set to fs = 10 Msps and the data was transmitted as 16-bit

complex shorts with a SF = 211 scaling factor to maximize the SDR’s dynamic range.

SDR transmission required the use of the bladeRF-cli tool in the bladeRF host li-

braries. This command-line tool configured the BladeRF SDR for transmitting at the

desired specifications listed above and also enabled the SDR to transmit bursts from

a binary file generated by a MATLAB® script. During all training and testing trans-

missions, a R = 50 Ω Sub-Miniature version A (SMA) dummy load was connected to

the BladeRF’s receiver port.

To ensure consistency throughout the experiments, an SMA cable with a 30 dB

attenuator connected the transmitting BladeRF to the Universal Software Radio Pe-

ripheral (USRP) x310 SDR for all training and testing collections. This setup suc-

cessfully enabled consistent collections for the experiment (Figure 14 and Figure 15).

Since the CB-DNA fingerprints were generated by performing statistical analysis on

the constellation projection cued from the demodulated O-QPSK symbols, the clas-

sifier could potentially develop inaccurate Projection Matrices (Ws) by keying in on

external factors such as Radio Frequency Interference (RFI). The Zigbee protocol

inherently prevents RFI by performing a Clear Channel Assessment (CCA) using

Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) to ensure that

only one device utilizes the channel at a time [7, 33]. Specifically, the impact of RFI

occurring on a transmitted Zigbee burst can be seen in Figure 16. From Figure 17, it

was found that external factors such as RFI impact the demodulation process and can

potentially distort the generated CB-DNA fingerprints used for training and testing.

Thus, for the purposes of this research, the cable and attenuator emulated a Zigbee

network after successful CCA.

Additionally, the Energy per Symbol to Noise Power Spectral Density (Es/N0) was
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Figure 14: Half-sine pulse shaped Zigbee burst at fc = 2480 MHz collected using a
cable and 30 dB attenuator.
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Figure 15: Constellation Projection of the estimated O-QPSK symbols from the half-
sine pulse shaped Zigbee burst shown in Figure 14.
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Figure 16: Over-the-air collected half-sine pulse shaped Zigbee burst at fc = 2480
MHz. The annotated spike represents RFI occurring from an unknown source.
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Figure 17: Constellation projection of the estimated O-QPSK symbols from the half-
sine pulse shaped Zigbee burst shown in Figure 16. The RFI impacts the distribution
of O-QPSK symbols within the constellation projection.
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determined from device collections using the experimental configuration. To calculate

the Es/N0 in Decibels (dB), first the average power of the collected complex signal

sc[m] was calculated by

Sc =
1

M

M−1∑
m=0

sc[m]s∗c[m] (33)

such that s∗c[m] is the complex conjugate of sc[m]. Additionally, it was assumed that

the collected complex signal consisted of

sc[m] = s[m] + nb[m], (34)

Nb =
1

M

M−1∑
m=0

nb[m]n∗
b[m] (35)

where s[m] is the transmitted complex signal, nb[m] is the collected background

noise, and Nb is the average power of the background noise. The Signal-to-Noise

Ratio (SNR) of the burst was calculated in dB such that

SNR = 10 log10

(
Sc −Nb

Nb

)
. (36)

From the SNR value, the Es/N0 achieved in dB was calculated using

Es/N0 = 10 log10

(
Tsym

Tsamp

)
+ SNR (37)

such that Tsym is the period of an O-QPSK symbol and Tsamp is period of a sample.

For the experimental configuration utilized in this research, the Es/N0 value achieved

over the cable was Es/N0 ≈ 31 dB for all devices.
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3.6 C++ Environment

The top-level entity within the C++ environment worked by performing four

main tasks, each with its own dedicated thread. This C++ object builds upon a

multi-threaded, circular buffer class developed by [34]. The first thread configures

the receiver SDR and streams complex-samples into the C++ environment (Sec-

tion 3.6.1). The second thread takes the received SDR samples and performs burst

detection (Section 3.6.2). The collected burst is then passed to a third thread which

mitigates frequency and phase offsets between the transmitter and receiver, and de-

modulates the signal (Sections 3.6.3 - 3.6.4). This thread also calculates the CB-DNA

fingerprints (Section 3.6.5). The last thread classifies the collected Zigbee burst (Sec-

tion 3.8) using data generated from a set of training fingerprints (Section 3.7).

3.6.1 SDR Receiver Design and Implementation

A USRP x310 SDR with an SBXv3 daughterboard was the receiver utilized as

the air monitor for this experiment. The SBX daughterboard has a tuning range of

fx310 = [400 4400] MHz, maximum instantaneous bandwidth of Bx310 = 40 MHz, and

a max sampling rate of fsx310 = 20 Msps. The SBXv3 was selected for the experiment

since the targeted transmissions will occur at fc = 2480 MHz.

A Global Positioning System (GPS) Disciplined Oscillator (GPSDO) Oven Con-

trolled Crystal Oscillator (OCXO) Mini was also installed in the USRP x310 to im-

prove the accuracy of the reference clock. The OCXO works by maintaining the

oscillator’s crystal at a fixed temperature that is higher than the manufacturer op-

erating temperature range. This oven-controlled process significantly reduces the

temperature variation of the crystal, which directly improves the timing accuracy of

the reference clock. However, a GPS antenna kit was not installed during the experi-

ment to achieve GPS lock. Therefore, only the OCXO improved timing accuracy for
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this experiment.

The host computer utilized for this experiment was a Hewlett-Packard Z840. Ta-

ble 3 contains the pertinent hardware information for the host computer.

In the C++ environment, the USRP x310 is configured to a center frequency

of fc = 2480 MHz with a bandwidth of Wrx = 10 MHz and a sampling rate of

fs = 10 Msps. The received data streamed from the SDR to the host computer in

t = 1 ms blocks of 32-bit complex float values. For the given sampling rate, a total

of Nsamples = (10× 106 sps)(10−3 Sec) = 104 samples compose the time block passed

to the host computer.

For both training and testing collections, the dedicated receiver port of the USRP

x310 SBXv3 daughterboard maintained a connection to the transmitting BladeRF

device via a SMA cable. Additionally, the daughterboard’s transceiver port was

terminated with a R = 50Ω SMA dummy load during the experiment.

3.6.2 Burst Detection

Burst detection identified Zigbee transmissions with an energy detection tech-

nique. In the C++ environment, the received block of Nsamples = 104 samples from

the USRP x310 SDR were initially filtered using a 4th-order lowpass Butterworth

filter with a normalized cutoff frequency of Wn = fCh 26

fs
≈ 0.2480. The coefficients for

the lowpass Butterworth filter were calculated in MATLAB® and then ported to a

liquid-dsp object within the C++ environment. Next, a moving average filter with

Table 3: Hardware configuration of the host computer
Computer Model: HP Z840
Operating System: Ubuntu 18.04.2 LTS
Processor Type: Intel Xeon CPU E5-2687W v3 (25 MB, 3.10 GHz)
Number of Processing Cores: 10
Main Memory Type: Micron MTA36ASF2G72PZ (DDR4 SDRAM, 16 GB, 288 RDIMM)
Total Main Memory Size: 64 GB
Secondary Memory Type: TOSHIBA DT01ACA200 HDD (7200 RPM)
Secondary Memory Size: 2 TB
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a span of Nspan = 250 samples smoothed the signal. The process then represented

the magnitude of the smoothed signal in dB. An energy threshold is then empirically

identified from

dBthreshold = (max(|ssmooth[n]|)−min(|ssmooth[n]|))× 0.9 + min(|ssmooth[n]|), (38)

such that ssmooth[n] is the output from the moving average filter. Since the samples

streamed from the USRP x310 SDR were complex floats, the dynamic range of values

was between -1 and 1. Therefore, the calculated dBthreshold was a negative value.

Once a burst was detected, the code concatenated seven t = 1 mSec blocks of

SDR data to ensure the entire burst was collected. Table 4 shows the composition of

the seven concatenated blocks.

Since the burst detection process only verifies that the received signal exceeded an

energy threshold, the collected burst is not guaranteed to be a Zigbee transmission.

However, the Radio Frequency (RF) air monitor discards spurious bursts prior to

CB-DNA fingerprint generation, which Section 3.6.4 addresses.

3.6.3 Mitigating Frequency and Phase Offsets

The frequency carrier offset was estimated using a Modified Rife frequency es-

timate as developed by [35]. The outlined approach is for Minimum Shift Keying

(MSK) applications, but MSK is a special case of O-QPSK with sinusoidal symbol

Table 4: Structure of collected burst by concatenating SDR data blocks
Structure of Concatenated SDR Blocks

Time (mSec)
1 2 3 4 5 6 7

Burst Block - 1 Burst Block Burst Block + 1 Burst Block + 2 Burst Block + 3 Burst Block + 4 Burst Block + 5

Data previously
stored

Performed
burst detection

No burst
detection
performed

No burst
detection
performed

No burst
detection
performed

No burst
detection
performed

No burst
detection
performed
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weighting [36]. Since the fB3 = 2400 MHz band for Zigbee requires half-sine pulse

shaping, the generated O-QPSK signal satisfies the above requirement. Therefore, by

adopting the work from [35], the square of the received O-QPSK signal is

s2(t) = A2 exp

(
j4π

[
fc +

a(t)

4TCS

]
+ 2φ0

)
(39)

where A is the amplitude, fc is the carrier frequency, a(t) are data symbols, TCS

is the period of an O-QPSK communication symbol, and φ0 is an equivalent phase.

From (39), it can be seen that the square of the O-QPSK signal is a Frequency Shift

Keying (FSK) signal with two carrier frequencies such that

f1 = 2fc +
1

2TCS
,

f2 = 2fc −
1

2TCS
.

(40)

Therefore, summing the two carrier frequencies in (40) and solving for fc yields

f̂c =
1

4
(f1 + f2) (41)

where f̂c is the estimated carrier frequency offset. The described frequency estimation

technique is applicable when the offset is close to baseband as shown in Figure 18.

Applying the carrier frequency estimation method requires the following steps:

1. Square each sample on the collected burst from the USRP x310 SDR

2. Perform a Fourier Transformation (FT) on the squared signal

3. Split the spectrum into two regions:

• 1st Region (R1): −fs
2
≤ R1 ≤ 0
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• 2nd Region (R2): 0 < R2 ≤ fs
2

4. Search each of the two regions for the maximum value and record the locations

of where the local maxima occur as f1 and f2 respectively (Figure 18)

5. Calculate f̂c using (41)

The resolution of f̂c is directly related to the size of the Fast Fourier Transform

(FFT). The resolution error can be calculated by

fq =
fs

4NFFT

(42)

where fq is the minimum frequency resolution for the estimate, fs is the sampling

frequency, and NFFT is the number of FFT points. The scalar value of four derives

from the process of estimating f̂c.

It was found that two factors significantly impact the demodulation process through
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Figure 18: Normalized |FFT|2 of a Zigbee burst. The number of FFT points was
NFFT = 220.
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carrier frequency estimation. First, if the O-QPSK symbols rotate more than φ = π
2

radians during the time of the collected burst (tburst), demodulation will not be achiev-

able because the receiver cannot synchronize the symbol constellation and the burst.

Additionally, if the received signal has a low SNR, the frequency estimation process

does not return an accurate value. Thus, the limits for both factors were determined

to ensure that the experimental results would not be negatively impacted.

First, since a rotation greater than φ = π
2

radians is the physical limit, the maxi-

mum frequency resolution able to successfully perform demodulation was determined

to be

sin (2πfqmaxtburst) ≤ sin
(π

2

)
⇒ fqmax ≤

1

4tburst

.
(43)

Due to the fact that all training and test bursts have the same duration of NDS =

212 Zigbee DS, the time of each collected burst was calculated to be

tburst =

(
212 DSZ

burst

)(
32 chips

DSZ

)(
CSO

2 chips

)(
Sec

106 CSO

)
= 3.392 mSec (44)

where DSZ is a Zigbee DS and CSO is an O-QPSK communication symbol. Using

(43) and the results of (44), the maximum allowable carrier frequency offset to achieve

demodulation for this research is

fqmax ≤
1

4 (3.392× 10−3 Sec)
≈ 73.7 Hz. (45)

Figures 19-22 show the impact of a carrier frequency offset on an ideal Zigbee

signal. The ideal demodulated signal, represented in Figure 19, has fq = 0 Hz car-
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rier frequency offset. As the frequency offset increases, the sampling point for the

demodulation process begins to drift. Figure 20 shows the drift for when fq = 47 Hz.

In Figure 21, the ideal signal still demodulates because the frequency drift of fq =

73 Hz has not yet crossed symbol boundaries. However, in Figure 22, the signal no

longer demodulates correctly as the frequency offset increases to fq = 74 Hz.

Since an objective of this experiment is to be NRT, the runtime required to com-

pute the FFT of the collected burst must be balanced with the frequency resolution

provided by the FFT. Therefore, for the purpose of this experiment, the number of

FFT points used for carrier frequency estimation was NFFT = 220 = 1048576 points.

Utilizing (42), the frequency resolution was found to be
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Figure 19: Constellation projection of a simulated ideal half-sine pulse shaped Zigbee
burst with fq = 0 Hz frequency offset. The Zigbee burst was composed of NDS = 212
Zigbee DSs. The corresponding O-QPSK symbols are represented by discrete dots
in the constellation projection. Since the signal is ideal, all NCS = 3392 O-QPSK
symbols project to one of four locations. Additionally, the signal can be demodulated
correctly since the O-QPSK symbols rotate less than φ = π/2 radians during tburst.
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Figure 20: Constellation projection of a simulated ideal half-sine pulse shaped Zigbee
burst with fq = 47 Hz frequency offset. The Zigbee burst was composed of NDS = 212
Zigbee DSs. The corresponding O-QPSK symbols are represented by discrete dots
in the constellation projection. The signal can be demodulated correctly since the
O-QPSK symbols rotate less than φ = π/2 radians during tburst.

fq =
10× 106

(4) (220)
≈ 2.3842 Hz. (46)

Additionally, this research conducted a simulation of NSNR = 1000 bursts for every

SNR value ranging from Es/N0 = [−12, 13] dB inNdB incr = 0.25 dB increments to test

the limitations of the designed O-QPSK receiver. Figure 23 shows the Symbol Error

Rate (SER) determined from the simulation runs for the O-QPSK receiver compared

to the theoretical Quadrature Phase Shift Keying (QPSK) SER. The performance of

the O-QPSK receiver closely tracked the ideal QPSK SER with the exception of SNR

values below Es/N0 = 0 dB. At this point, the developed O-QPSK receiver cannot

achieve synchronization because the carrier frequency offset estimates are unreliable.
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Figure 21: Constellation projection of a simulated ideal half-sine pulse shaped Zigbee
burst with fq = 73 Hz frequency offset. The Zigbee burst was composed of NDS = 212
Zigbee DSs. The corresponding O-QPSK symbols are represented by discrete dots
in the constellation projection. The signal can be demodulated correctly since the
O-QPSK symbols rotate less than φ = π/2 radians during tburst.

This limitation is consistent with the Cramer-Rao Lower Bound for QPSK signals

[37, 38].

Overall, the simulation indicated that perfect demodulation with the O-QPSK

receiver was achieved for SNR values of Es/N0 = [5, 13] dB and that demodulation

errors began to occur at Es/N0 = 4.75 dB. None of the bursts correctly demodulated

for SNR values of Es/N0 = [−12, −1.25] dB.

Furthermore, Figure 24 presents a bar graph for the average (mean) number of

times from the NSNR = 1000 bursts that the estimated carrier frequency offset was

less than the maximum frequency drift allowed. At low SNR values, the variance of

the estimated frequency offset was typically large (shown in Figure 25) and resulted
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Figure 22: Constellation projection of a simulated ideal half-sine pulse shaped Zigbee
burst with fq = 74 Hz frequency offset. The Zigbee burst was composed of NDS = 212
Zigbee DSs. The corresponding O-QPSK symbols are represented by discrete dots in
the constellation projection. The signal can no longer be demodulated correctly since
the O-QPSK symbols rotate more than φ = π/2 radians during tburst.

in the inability to demodulate the O-QPSK signal. Conversely, at high SNR values,

the variance of the estimated frequency offset was small (shown in Figure 26) and

allowed for the O-QPSK signal to be demodulated correctly.

Given that the value of fq calculated in (46) is less than the fqmax calculated in

(45), the signal can be successfully demodulated in environments where the SNR is

greater than or equal to Es/N0 = 5 dB. A theoretical constellation projection of a

Zigbee burst with fq ≈ 2.3842 Hz in a simulated SNR of Es/N0 = 20 dB environment

can be seen in Figure 27.

Since the minimum resolution for the carrier frequency offset is fq ≈ 2.3842 Hz,

the frequency estimate f̂c can be no less than the value of ±fq. After calculating the
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Figure 23: Probability of symbol error v.s. Es/N0 for an O-QPSK signal. Theoretical
QPSK symbol error rates are represented by red circles and the simulated O-QPSK
receiver symbol error rates are represented by blue points. The 95% Confidence
Interval (CI) on each point is not explicitly represented in the plot since the marker
sizes are larger than the CI bounds.

frequency offset estimate, the offset can then be removed from the collected signal by

performing

sf̂c removed(t) = s(t) exp
(
−j2πf̂ct

)
. (47)

After removing the frequency offset estimate, the C++ code performed cross-

correlation between the collected signal and the complex conjugate of a locally gener-

ated Zigbee SHR reference signal. The cross-correlation searched a region of Nxcorr =

± 2000 lags from the sample that exceeded the energy threshold to align the collected

signal to the start of the burst. The code determined the optimum burst starting point

by choosing the cross-correlation lag that produced the largest magnitude. The code

then reduced the collected signal to only contain NDS = 212 Zigbee DSs from the

cross-correlation determined start position.
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Figure 24: Probability that the estimated carrier frequency offset (f̂c) is less than
or equal to the maximum frequency resolution (fqmax) for a Zigbee burst consisting
of NDS burst = 212 Zigbee DSs. Probability calculated using NSNR = 1000 simulated
Zigbee bursts at each Es/N0. SNR values ranged from Es/N0 = [−5, 1] dB.
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Figure 25: Histogram of difference between estimated and actual frequency offset
at Es/N0 = −5 dB. For NSNR bursts = 1000 bursts, the variance of the frequency
difference is σ2

−5dB = 2.612× 1011.
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Figure 26: Histogram of difference between estimated and actual frequency offset at
Es/N0 = 13 dB. For NSNR bursts = 1000 bursts, the variance of the frequency difference
is σ2

13dB = 1.4749.

Next, the code estimated the phase offset by taking the dot product of the SHR

of the collected burst with the previously generated Zigbee SHR reference signal.

The dot product yields both a correlation and phase value as a measure of similarity

between two signals. Therefore, the phase difference in radians is calculated by

φ̂ = angle

(∑
n

xalign[n]ȳ[n]

)
(48)

where xalign[n] is the aligned burst, y[n] is the local reference signal, and φ̂ is the

estimated phase offset. The phase offset estimate was then removed by

xφ̂ removed
[n] = xalign[n] exp

(
−jφ̂

)
. (49)

Symbol boundaries for the burst were then estimated by incrementally shifting

the signal from
⌈
− samples per symbol

2(2)

⌉
to
⌈

samples per symbol
2(2)

⌉
samples and performing a

dot product with the locally generated Zigbee SHR reference signal. The shift that

produces the dot product with the largest magnitude is the optimum sampling point
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Figure 27: Constellation projection of simulated half-sine pulse shaped Zigbee burst
with a frequency offset of fq ≈ 2.3842 Hz at Es/N0 = 20 dB.

for symbol boundary estimation. The code then conducts a circular shift of the signal

to start at that position. For this research, the number of samples per symbol was

samples per symbol =
fs

fO-QPSK Sym Rate

=
10× 106 sps

106 O-QPSK Syms/s

= 10
samples

O-QPSK Syms
.

(50)

Therefore, the shifts conducted for this experiment ranged from
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⌈
−samples per symbol

2(2)

⌉
=

⌈
−10

4

⌉
= −3, (51)

⌈
samples per symbol

2(2)

⌉
=

⌈
10

4

⌉
= 3. (52)

3.6.4 O-QPSK Demodulation

The RF air monitor performed half-sine matched filtering to demodulate the col-

lected burst by implementing an Integrate-and-Dump Filter (IDF). The matched filter

output returned the constellation projections from which the transmitted chips, and

O-QPSK symbols, could be estimated. The RF air monitor estimated the In-Phase

(I)-channel chips by the sign of the real portion of the constellation projection. Sim-

ilarly, the air monitor estimated the Quadrature (Q)-channel chips by the sign of the

imaginary portion of the projection. A positive sign was mapped to a binary “1”,

and a negative sign was mapped to a binary “0”. O-QPSK symbols were determined

by grouping corresponding estimated I-channel and Q-channel chips.

The estimated chips then ascertained if the collected burst was a Zigbee trans-

mission. The RF air monitor skipped the first Nskip = 32 chips to ensure the signal

was in a stable region. Zigbee burst verification was dependant upon the following

Nkeep = 94 chips (three Zigbee DSs) in the signal.

Using the knowledge that the Zigbee preamble is eight Zigbee DSZ = 0, the

Nkeep = 94 chips selected should also map to three DSZ = 0. To verify this DS

sequence, the Nkeep = 94 selected chips were then converted into a non-return-to-zero

form along with the Zigbee DSZ = 0 chip mapping. The Nkeep = 94 chips were then

split into Nsym = 3 regions of Nregion = 32 chips. Each chip region was then correlated

with the DSZ = 0 non-return-to-zero chip mapping to yield a correlation range of

ρmin = -32 to ρmax = 32. If the two sequences are identical, the correlation result is
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ρmax = 32, while if the sequences are completely opposite, the correlation result is

ρmin = -32.

Due to the quasi-orthogonality of the Zigbee DS chip mapping (Table 1), a min-

imum of Ndiff = 12 chips must be switched before a Zigbee DS could potentially

map to an incorrect DS. The correlation values between Zigbee DSs are shown below

in Table 5. A threshold value of ρthreshold = 30 was chosen, such that each of the

three-chip regions allowed a maximum of Nerror = 2 incorrect chips in the sequence.

Therefore, if only two chips are incorrect in the sequence, it was still the most likely

Zigbee DS transmitted.

3.6.5 CB-DNA Fingerprints

CB-DNA fingerprints were generated within C++ by searching for the N = 30

conditional sub-clusters of interest shown in Tables 6 - 9. As shown in Figure 10,

Table 5: Correlation between Zigbee data symbols. Auto-correlation is shown in the
main diagonal in table.

Zigbee Data Symbol Correlation Values
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 32 0 -4 -8 -8 -8 -4 0 0 8 4 -8 -8 -8 4 8
1 0 32 0 -4 -8 -8 -8 -4 8 0 8 4 -8 -8 -8 4
2 -4 0 32 0 -4 -8 -8 -8 4 8 0 8 4 -8 -8 -8
3 -8 -4 0 32 0 -4 -8 -8 -8 4 8 0 8 4 -8 -8
4 -8 -8 -4 0 32 0 -4 -8 -8 -8 4 8 0 8 4 -8
5 -8 -8 -8 -4 0 32 0 -4 -8 -8 -8 4 8 0 8 4
6 -4 -8 -8 -8 -4 0 32 0 4 -8 -8 -8 4 8 0 8
7 0 -4 -8 -8 -8 -4 0 32 8 4 -8 -8 -8 4 8 0
8 0 8 4 -8 -8 -8 4 8 32 0 -4 -8 -8 -8 -4 0
9 8 0 8 4 -8 -8 -8 4 0 32 0 -4 -8 -8 -8 -4
10 4 8 0 8 4 -8 -8 -8 -4 0 32 0 -4 -8 -8 -8
11 -8 4 8 0 8 4 -8 -8 -8 -4 0 32 0 -4 -8 -8
12 -8 -8 4 8 0 8 4 -8 -8 -8 -4 0 32 0 -4 -8
13 -8 -8 -8 4 8 0 8 4 -8 -8 -8 -4 0 32 0 -4
14 4 -8 -8 -8 4 8 0 8 -4 -8 -8 -8 -4 0 32 0
15 8 4 -8 -8 -8 4 8 0 0 -4 -8 -8 -8 -4 0 32
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these Nlikely = 30 symbol transitions are the most likely occur within an arbitrary

Zigbee burst. Utilizing the estimated O-QPSK symbols generated in the demodu-

lation process, a search for all occurrences of the significant conditional sub-clusters

within the collected Zigbee burst is conducted. The fingerprints are then generated

by performing the statistical analysis on the “current” symbol within the baseband

signal and stored in the fingerprint structure. This process is repeated for each of

the Nlikely = 30 conditional sub-clusters, which yielded a total of NfeaturesCB
= 270

features as shown in (29) for each Zigbee burst.

Table 6: Conditional Sub-Clusters: Current O-QPSK Symbol CS = 0. Boxes with
check-marks are transitions of interest for CB-DNA fingerprint generation.

Next SymbolConditional Sub-Clusters
Current O-QPSK Symbol = 0 0 1 2 3

0 X X
1 X
2 X X X

Previous
Symbol

3 X X

Table 7: Conditional Sub-Clusters: Current O-QPSK Symbol CS = 1. Boxes with
check-marks are transitions of interest for CB-DNA fingerprint generation.

Next SymbolConditional Sub-Clusters
Current O-QPSK Symbol = 1 0 1 2 3

0 X
1 X X
2 X X

Previous
Symbol

3 X X X
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Table 8: Conditional Sub-Clusters: Current O-QPSK Symbol CS = 2. Boxes with
check-marks are transitions of interest for CB-DNA fingerprint generation.

Next SymbolConditional Sub-Clusters
Current O-QPSK Symbol = 2 0 1 2 3

0 X X X
1 X X
2

Previous
Symbol

3 X X

Table 9: Conditional Sub-Clusters: Current O-QPSK Symbol CS = 3. Boxes with
check-marks are transitions of interest for CB-DNA fingerprint generation.

Next SymbolConditional Sub-Clusters
Current O-QPSK Symbol = 3 0 1 2 3

0 X X
1 X X X
2 X X

Previous
Symbol

3

3.7 MDA Model Generation

A MATLAB® script created the Multiple Discriminant Analysis (MDA) W out-

side of the C++ environment. To generate the fingerprint structures for MDA train-

ing, the C++ environment processed Ntraining = 500 training bursts from each of the

Ncls = 5 BladeRF devices. Prior to MDA, each training fingerprint was normalized

to a Standard Normal distribution (∼ N (0, 1)) using

µtng =

(
1

NclsNbursts

) Ncls∑
d=1

Nbursts∑
b=1

ftngd,b , (53)

σtng =

√√√√( 1

NclsNbursts − 1

) Ncls∑
d=1

Nbursts∑
b=1

(
ftngd,b − µtng

)2

, (54)

ztng =
ftng − µtng

σtng

, (55)
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where ftngd,b is the training fingerprint for burst b from device d, and ztng is a standard

normal fingerprint. Each fingerprint’s mean (µtng) and standard deviation (σtng) were

calculated for each of the NfeaturesCB
= 270 features. These values were imported into

the C++ environment to transform the future test fingerprints.

MATLAB® then passed the standard normal training fingerprint structure into

the MDA script where k = 5 cross-fold validation [39] occurred. The cross-fold

validation was accomplished by taking the training fingerprints and randomly sorting

them into Nk-fold = 5 equal partitions. Next, Ws were then generated by performing

MDA with Npartitions = 4 partitions at a time and using the remaining partition to

validate the W. The process created a total of
(

5
4

)
= 5 Ws during training, where the

MATLAB® script selects the best performing W for implementation in the C++

environment. For each device, the location of the training fingerprint’s mean within

the projection space was also imported into C++ to calculate the Euclidean Distance

(ED).

3.8 C++ Classifier

After completing training, the C++ classifier obtained fingerprints generated from

a collected Zigbee burst and performed classification NRT using the training variables

previously calculated. When receiving fingerprints from a test burst, the classifier first

normalizes the fingerprints using

ztst =
ftst − µtng

σtng

(56)

where ftst is the test fingerprint and ztst is the normalized test fingerprint. Using the

best performing training W, the normalized test fingerprint is then projected into

the training space by
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fproj = WT
best · ztst (57)

such that Wbest is the best performing W from the k = 5 cross-fold validation and

fproj is the location of the test fingerprint in the projection space. The ED to each

device mean is then calculated using (31) for the projected test fingerprint. The

device mean with the shortest ED from the test fingerprint is the estimate for the

most likely transmitting device. The RF air monitor records the called device for

every Zigbee test burst to create the CM.
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IV. Results and Analysis

This chapter presents the experimental data collected for Near Real-Time (NRT)

device classification using Constellation-Based Distinct Native Attribute (CB-DNA)

fingerprints with a Multiple Discriminant Analysis/Euclidean Distance (MDA/ED)

classifier. Section 4.1 discusses the performance of the CB-DNA air-monitor for Ncls =

5 like-model Software Defined Radios (SDRs) transmitting Zigbee bursts. Section 4.2

performs a runtime analysis to assess the NRT aspect of the air-monitor.

4.1 Air Monitor Test Results

Section 4.1.1 discusses using Multiple Discriminant Analysis (MDA) to develop

a Projection Matrix (W) from experimentally collected training fingerprints. Sec-

tion 4.1.2 addresses Euclidean Distance (ED) and how classification is performed

for the BladeRF devices. Finally, Section 4.1.3 presents the MDA/ED classification

results for each of the BladeRF SDRs.

4.1.1 MDA Model Generation

Training data was composed of CB-DNA fingerprints for Ntraining = 500 bursts

from each of the Ncls = 5 like-model BladeRF SDRs. MDA generated a W from

the training data which projected fingerprints into a Ndim = 4-dimensional space.

Figure 28 shows all of the two-dimensional representations of the projected training

fingerprints. Furthermore, Figure 28 also presents a histogram of the fingerprint lo-

cations for each projection space dimension. Since visualizing spaces greater than

3-dimensions can be challenging, these subfigures provided a method of visually ver-

ifying if MDA achieved inter-class separation during the model generation process.

For each subfigure, excluding the histograms, five distinct clusters are present. Each
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cluster represents the training fingerprints for a BladeRF device. If the MDA fea-

ture selection process had been poor, multiple classes (clusters) would overlap within

the subfigures (arbitrary example shown in Figure 29). As mentioned in Section 2.5,

MDA does not provide insight into fingerprint feature relevance. Therefore, this visual

inspection method validated that class separation was achievable with the provided

training fingerprints prior to performing classification.

Figure 28: Training CB-DNA fingerprint projections for Ncls = 5 class scenario con-
fined to two-dimensions. Main diagonal contains the histogram of fingerprint locations
along the projection axis. Subfigures indicate that MDA achieved class separation
with the provided CB-DNA fingerprints.
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Figure 29: Simulated training CB-DNA fingerprint projections for Ncls = 5 class
scenario confined to two-dimensions. Main diagonal contains the histogram of finger-
print locations along the projection axis. Subfigures show that all five classes overlap
which indicates that MDA was not able to achieve class separation with the provided
simulated fingerprints. Classification performance with this W would likely be poor.

4.1.2 Euclidean Distance Classifier

The class mean for each device within the projection space was of interest to

this research. The training CB-DNA fingerprints yielded the class means shown in

Table 10 within the projection space. For the test scenario, projected fingerprints

calculate the ED to each of the training class means using (31). The class with the

shortest calculated ED is classified as the “most likely” transmitting device.
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Table 10: Projected class means for Ncls = 5 like-model BladeRF devices
Training Fingerprint Class Means

Dimension X1 Dimension X2 Dimension X3 Dimension X4
BladeRF1 -0.0704 0.0125 -0.0424 0.0091
BladeRF2 0.0431 -0.0224 0.0047 0.0286
BladeRF3 0.0704 0.0302 0.0177 0.0008
BladeRF4 -0.0908 -0.0050 0.0389 -0.0086
BladeRF5 0.0476 -0.0154 -0.0190 -0.0299

4.1.3 Air Monitor Classification Performance

For testing, each of the Ncls = 5 like-model devices transmitted Nbursts = 500

bursts. The W created in Section 4.1.1 projected each of the test fingerprints into

the projection space. The classifier then calculated the ED to all class means from the

projected test fingerprint. Tables 11 and 12 present the results of the air monitor test

scenario in two different Confusion Matrix (CM) formats. For Table 11, each row is

the number of total transmissions for the specified BladeRF, and the columns indicate

to which device the burst was classified. Table 12 presents the same information in

Average Cross-Class Percent Correct Classification (%C), instead of discrete bursts,

along with the classifier’s best and worst performance.

From the results, it is apparent that all of the devices achieved high classification

performance for the test scenario. Of note, BladeRF4 achieved perfect classifica-

tion, which was the top-performing device tested. Conversely, BladeRF1 achieved

the lowest classification rate but still reached Average Percent Correct Classification

(%Ccls)= 97.6%. Taking the total number of correctly classified devices from the test

scenario yielded a %C= 99.24% performance for the MDA/ED classifier.
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Table 11: Confusion matrix of NRT discrimination test results for Ncls = 5 like-model
BladeRF devices. SNR was Es/N0 ≈ 31 dB for the collection.

CalledConfusion
Matrix BladeRF1 BladeRF2 BladeRF3 BladeRF4 BladeRF5

Total Bursts
Transmitted

BladeRF1 488 0 0 12 0 500
BladeRF2 2 498 0 0 0 500
BladeRF3 0 0 498 0 2 500
BladeRF4 0 0 0 500 0 500

Actual

BladeRF5 1 1 1 0 497 500
Total Bursts Classified 491 499 499 512 499 2500

Table 12: Confusion matrix of NRT %C for Ncls = 5 like-model BladeRF devices.
SNR was Es/N0 ≈ 31 dB for the collection.

CalledConfusion
Matrix BladeRF1 BladeRF2 BladeRF3 BladeRF4 BladeRF5

BladeRF1 97.6% - - 2.4% -
BladeRF2 0.4% 99.6% - - -
BladeRF3 - - 99.6% - 0.4%
BladeRF4 - - - 100% -

Actual

BladeRF5 0.2% 0.2% 0.2% - 99.4%
Min %Ccls 97.6%
Max %Ccls 100%
Overall %C 99.24%

4.2 Timing Analysis

This research also conducted a runtime analysis for each of the C++ threads that

processed SDR data using the hardware configuration listed in Table 3. This analysis

assessed the NRT capability of the air monitor by calculating the average runtime

from burst detection to classification. The threads of interest are burst detection,

signal demodulation/fingerprint generation, and classification as shown in Figure 30.

The timing analysis utilized a total of Nburst = 1000 bursts from BladeRF4 to generate

the samples used in calculating the average runtime for each thread. Additionally, a

95% Confidence Interval (CI) on the average runtime for each thread was calculated.

For the burst detection thread, two specific time durations were of interest to the

research. The first duration of interest was the time to complete all of the necessary

filtering and search of the signal for exceedance of the energy level threshold. The
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Figure 30: Flow diagram of threads that process SDR data

second time duration measurement of interest was the overall thread execution time to

perform the core tasks listed above and all of the additional overhead code. Of note,

the burst detection thread acted as a state machine that operated in two different

modes (Figure 31). One state actively searched for an energy threshold exceedance in

the SDR samples while the other state built the full Zigbee transmission after burst

detection.

During the time to transmit and classify Nburst = 1000 Zigbee bursts, the Radio

Frequency (RF) air monitor continually processed tblock = 1 mSec of data at a time.

For every instance that the portion of code executed, the time duration was recorded

as a sample. Overall, the search portion of the burst detection code collected a

total of NBurst Det = 112334 samples, while the overall thread execution produced

Burst 

Detection

Energy Threshold 

Not Exceeded

Energy

Threshold 

Exceeded Build Burst 

Structure

Burst Duration < 7ms

Burst Duration = 7ms

Figure 31: State machine of burst detection thread
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NBurst Det Thread = 117734 samples. Figures 32 and 33 show the histograms for both

data sets, where the measured time is in microseconds. From Figure 32, the histogram

of the burst detection process indicates that the distribution is right-skewed, while

Figure 33 implies that the distribution is bimodal. The bimodal distribution is due

to the two distinct operating states of the burst detection state machine.

The signal demodulation and CB-DNA fingerprint generation thread contained

three runtimes of interest:

• The time duration to perform the Fast Fourier Transform (FFT) utilized to

estimate the carrier frequency offset.

• The time required to estimate and mitigate frequency and phase offsets, de-

modulate the signal, and generate CB-DNA fingerprints.

• The overall runtime of the thread to include the processes listed above and the
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Figure 32: Histogram of timing results for burst detection process in µs. The distri-
bution appears to be non-normal and specifically right-skewed.
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Figure 33: Histogram of timing results for burst detection thread in µs. The distri-
bution appears to be non-normal and specifically bimodal.

additional overhead code.

Figure 34 shows the flow diagram of the process.

From the Nburst = 1000 bursts, a total of NSP and FP = 1000 samples were col-

Signal 
Demodulation

Burst Does Not 
Correlate with 

Zigbee Preamble

Burst Correlates 
with Zigbee 
Preamble CB-DNA 

Fingerprinting

Fingerprints Generated

Figure 34: Flow diagram of signal demodulation and fingerprint generation thread
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lected for each of the three signal demodulation and CB-DNA fingerprint generation

runtimes of interest. Figure 35 shows the histogram of the FFT runtime which is

right-skewed. Similarly, the histograms for both demodulation/fingerprint calcula-

tions (Figure 36) and overall thread (Figure 37) runtimes indicate that the distribu-

tions are right-skewed.

For the classification thread, two runtimes were of interest. First was the time

duration required to classify CB-DNA fingerprints, and the other was the overall

classification thread runtime.

From the Nburst = 1000 bursts, a total of NClass = 1000 samples were collected

for each of the classification desired runtimes. Figure 38 shows the histogram for

the classification runtime and Figure 39 shows the overall thread runtime. Both

histograms of the sample distributions indicate that the population is non-normal

and specifically right-skewed.
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Figure 35: Histogram of timing results for FFT process in µs. The distribution
appears to be non-normal and specifically right-skewed.
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Figure 36: Histogram of timing results for demodulation/fingerprinting operations in
µs. The distribution appears to be non-normal and specifically right-skewed.
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Figure 37: Histogram of timing results for signal demodulation/fingerprint generation
thread in µs. The distribution appears to be non-normal and specifically right-skewed.
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Figure 38: Histogram of timing results for MDA/ED classification process in µs. The
distribution appears to be non-normal and specifically right-skewed.
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Figure 39: Histogram of timing results for MDA/ED classification thread in µs. The
distribution appears to be non-normal and specifically right-skewed.
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Since all of the collected sample distributions were non-normal, two different non-

parametric statistical methods provided insight into the collected data. The first

statistical method employed verified that the number of collected samples provided

an accurate representation of the population through the use of tolerance limits. To

determine a confidence metric for two-sided nonparametric tolerance limits, [40] con-

tributed

P
[
Y(1), Y(n) covers at least δ of the population

]
= 1− α

= 1− nδ(n−1) + (n− 1)δn

(58)

such that Y(1) and Y(n) are the minimum and maximum values in the sample size of n,

and δ is the percentage of the population. Therefore, with the sample sizes collected

for each of the seven different runtime scenarios, the confidence that the collected

samples represent δ = 0.995 of the population is determined by employing (58) for

each of the three unique sample values:

P [Burst Detection Process Samples]

= 1− (112334)(0.995)(112334−1) + (112334− 1) (0.995)112334

≈ 1,

(59)

P [Burst Detection Thread Samples]

= 1− (117734)(0.995)(117734−1) + (117734− 1) (0.995)117734

≈ 1,

(60)
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P [Other Scenario Samples]

= 1− (1000)(0.995)(1000−1) + (1000− 1) (0.995)1000

≈ 0.9599.

(61)

Due to the large number of samples for each runtime scenario, the experimental

collections were good representations of their respective populations. The second non-

parametric method employed was Bootstrap, which estimated a 95% CI on each of the

average runtimes since the distributions were asymmetric. Bootstrap is a computer-

based simulation method for statistical inference based on collected samples [41]. In

essence, the collected samples compose a database for the Bootstrap method to re-

sample with replacement. The resampling continues until achieving the same number

of elements as the original collection to create a Bootstrap replicate. This approach

repeats until producing the desired amount of Bootstrap replicates for analysis.

This analysis utilized Nbootstrap = 10000 randomly generated Bootstrap replicates

for each of the test scenario times. For each of the scenarios, the worst-case average

runtime metric was identified and calculated. For right-skewed distributions, the

worst-case average time was empirically found to be the sample mean since the value

was higher than the median value. For the bimodal distribution, the calculated sample

mean represented an unachievable runtime value. The sample mean was a distorted

statistic due to the two separate peaks occurring within the data. The sample mean

ultimately was a weighted average between the two distribution peaks and was not

an accurate representation of the runtime data. Additionally, the sample median

failed to produce any variability amongst the Bootstrap replicates. Therefore, for

this research, the sample mode provided the worst-case run time for the bimodal

distribution since the runtime value was more accurate than the calculated sample
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mean value and also provided a dynamic range.

The Bootstrap method then sorted the computed worst-case averages in ascend-

ing order for each test scenario. The values located in the desired percentile loca-

tions determined the confidence interval bounds. Given the Nbootstrap = 10000 Boot-

strap replicates, the desired percentile locations for a 95% confidence interval are

m∗
0.025 percentile = (10000 · 0.025) = 250 and m∗

0.975 percentile = (10000 · 0.975) = 9750

within the sorted values.

From the Bootstrap analysis, the average runtime for the burst detection calcu-

lations with a 95% CI was µBurst Det = [3.1931× 10−3, 3.1943× 10−3] Sec while the

burst detection thread runtime was µBurst Det Thread = [3.1950× 10−3, 3.1990× 10−3]

Sec. For the demodulation thread, the average runtime for the FFT was µFFT =

[0.2307, 0.2316] Sec, while runtime to demodulate the signal and generate finger-

prints was µDemod and FP = [0.2636, 0.2647] Sec. The overall thread runtime required

µDemod and FP Thread = [0.2641, 0.2652] Sec. Finally, BladeRF classification average

runtime was µClass = [3.0502× 10−5, 3.1780× 10−5] Sec and the overall thread run-

time was µClass Thread = [6.1825× 10−5, 6.4303× 10−5] Sec. Table 13 contains all of

the runtime averages along with the corresponding 95% CIs.

Therefore, using the upper bounds of the 95% CI for each of the three threads, the

worst-case average runtime from burst detection to classification was taverage runtime ≈

0.2684 Sec. Of note, the FFT utilized to estimate the carrier frequency offset com-

prises ∼ 86% of the total time to perform the NRT process. The average runtime

resulted in classifying slightly less than Nclassify = 4 bursts per second. Due to low-

power design constraints, ZigBee devices regularly only transmit Medium Access Con-

trol (MAC) packets once every few seconds. An example being the Zigbee Cluster

Library (ZCL) which is a standard tool employed when building Zigbee applications

with cluster functionality. For ZCL, default polling times for packet transmissions
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range from tshort poll = 0.5 Sec to tfast poll = 10 Sec to extend the battery life of de-

vices [42]. Therefore, the air monitor’s NRT performance is acceptable for Zigbee

applications.

Table 13: Average runtimes in seconds for Nscenarios = 7 different components of
interest

Average Runtimes of Interest

Runtimes (Sec)
95% CI

Lower Bound
Average

95% CI
Upper Bound

Burst Detection:
Calculations (Mean)

3.1931×10−3 3.1937×10−3 3.1943×10−3

Burst Detection:
Thread (Mode)

3.1950×10−3 3.1990×10−3 3.1990×10−3

Demodulation:
FFT (Mean)

0.2307 0.2311 0.2316

Demodulation:
Calculations (Mean)

0.2636 0.2641 0.2647

Demodulation:
Thread (Mean)

0.2641 0.2647 0.2652

Classification:
Calculations (Mean)

3.0502×10−5 3.1101×10−5 3.1780×10−5

Classification:
Thread (Mean)

6.1825×10−5 6.3043×10−5 6.4303×10−5
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V. Conclusions

As the entry barrier continues to lower for Internet of Things (IoT) applications,

the number of Low-Rate Wireless Personal Area Networks (LR-WPAN) devices and

users has significantly grown for both commercial and military purposes with a pro-

jected 1 billion annual shipments of Institute of Electrical and Electronics Engineers

(IEEE) 802.15.4 standard devices by 2024 [1]. Specifically, the Zigbee wireless pro-

tocol has seen significant adoption due to its low-cost, low-power, and mesh network

applications. Typical implementations of Zigbee devices range from remote sensors

to automation system controllers.

However, these devices present an expanded attack surface for Industrial Control

Systems (ICS) applications due to security vulnerabilities. Currently, open-source

tools enable malicious users to imitate authentic network devices by falsifying bit-

level credentials allowing them to gain unauthorized access to the network. Ulti-

mately, unauthorized network access could lead to the loss of sensitive network in-

formation or even potential sabotage through the dissemination of false information.

Through the use of Distinct Native Attribute (DNA) fingerprints, network security is

enhanced with Physical Layer (PHY) device characteristics augmenting the bit-level

authentication process.

5.1 Results Summary

This research showed that device discrimination using Constellation-Based Dis-

tinct Native Attribute (CB-DNA) fingerprinting is possible in Near Real-Time (NRT).

The C++ environment facilitated the use of tools NRT that are traditionally per-

formed in post processing.

Both training and testing collections required the use of a controlled environment
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due to Radio Frequency Interference (RFI). This environment guaranteed that the

training fingerprints generated were of the desired devices and not spuriously collected

transmissions.

For a Ncls = 5 like-model device test scenario, a Multiple Discriminant Analy-

sis/Euclidean Distance (MDA/ED) classifier was demonstrated for the first time using

CB-DNA fingerprints. Overall, the classifier was able to achieve an Average Cross-

Class Percent Correct Classification (%C) = 99.24% during testing. The worst-case

average runtime from burst detection to classification was truntime ≈ 0.2684 Sec. The

calculated runtime allowed for NRT device classification since normal Zigbee cluster

applications typically only transmit a burst every tshort poll = 0.5 Sec to tfast poll = 10

Sec [42] to limit power consumption.

5.2 Research Contribution

As previously identified in Section 3.2, the goal of this research was to develop an

air-monitor to classify received Zigbee bursts. Classification of CB-DNA fingerprints

employed the use of a MDA/ED classifier to determine the “most likely” transmitting

device.

The results presented in this research were consistent with previous NRT exper-

iments conducted using Radio Frequency Distinct Native Attribute (RF-DNA) fin-

gerprints and an Multiple Discriminant Analysis (MDA)/Maximum Likelihood (ML)

classifier [18]. However, the average runtime between conducted experiments varied

significantly with CB-DNA being the slower approach. The runtime difference stems

from the fact that CB-DNA enables the utilization of the entire received burst for

fingerprint generation by demodulating the signal. In comparison, the previously im-

plemented RF-DNA approach only uses the Sychronization Header Region (SHR) of

the burst and calculates fingerprints based on the instantaneous amplitude, phase,
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and frequency responses.

Overall, the first research hypothesis presented in Section 3.3 regarding (1) NRT

signal demodulation of IEEE 802.15.4 standard devices to create CB-DNA fingerprint

was validated. Additionally, experimental collections confirmed the second hypothesis

of (2) NRT device classification performance being consistent with previous NRT RF-

DNA efforts [18]. Therefore, this research proved that NRT device discrimination

utilizing CB-DNA fingerprints is achievable and can enhance network security for

Zigbee devices using PHY characteristics.

5.3 Future Work

This research provided a method of closing the gap between data collection and

analysis for device discrimination to improve network security. Specifically, future

work in the field should examine:

• Reducing the computational complexity of carrier frequency offset estimation.

Currently, the Fast Fourier Transform (FFT) implemented accounts for approx-

imately 86% of the average runtime due to creating and searching a NFFT = 220

problem space for every detected burst. A potential solution would be imple-

menting a Phase-Locked Loop to track the frequency offset.

• Expanding the demodulation object to encompass the entire IEEE 802.15.4

standard. Specifically, incorporating the ability to change to different frequency

bands, demodulate Binary Phase Shift Keying (BPSK) signals, and implement-

ing a root-raised cosine pulse shaping filter (demonstrations in this work are

based on half-sine pulse shaping). These endeavors would expand device dis-

crimination capabilities to the full operating range of the Zigbee protocol world-

wide.
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• Implementing a more robust classifier to reduce the number of required finger-

print features. Specifically, Random Forest (RndF) or Generalized Relevance

Learning Vector Quantization-Improved (GRLVQI) could provide insight into

fingerprint feature relevance. These results could then drive a reduction in the

number of generated fingerprints for a MDA classifier.

• Expand the device discrimination process beyond classification to include device

Identification (ID) verification (one device vs one device). Calculated decision

boundaries for each class from the training fingerprints could perform device

verification. The verification results could directly drive the input to an Intru-

sion Detection System (IDS)/Intrusion Prevention System (IPS) tool.

• Finally, updating the classifier to check the Signal-to-Noise Ratio (SNR) of the

collected burst. The classifier could then consider the Projection Matrix (W)

associated with the closest SNR value to improve classification in an operational

environment.

5.4 Summary

Using CB-DNA, the developed Radio Frequency (RF) air monitor discriminates

known Zigbee devices with high accuracy based on their PHY characteristics. Em-

ploying a PHY authentication method further enhances the bit-level verification ac-

complished natively within the protocol. Currently, the output of the air-monitor

could provide input into an IDS system to determine the authenticity of network de-

vices. This research directly supports the Department of Defense’s ability to enhance

security for LR-WPAN systems from rogue devices and malicious actors.
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